Browsed by

LDRA First to Support Arm-Based Chips for Safety-Critical Aerospace and Automotive Applications

LDRA First to Support Arm-Based Chips for Safety-Critical Aerospace and Automotive Applications

LDRA tool suite offers unique object code verification for coverage at the assembly level and code level, required for DO-178C Level A standard

LDRA today announced its extension of object-code verification to deliver advanced software testing for Arm-based chips used in safety-critical aerospace & defense and automotive applications. With Arm chipsets becoming increasingly prevalent in the core CPUs of both aircraft and automobiles, safety-critical verification becomes essential. LDRA’s support enables software developers to leverage the LDRA tool suite to verify code coverage at both the assembly and source code levels.

Arm’s Adoption into Aerospace, Automotive

Arm-based devices can often be found in ISO 26262–compliant automotive applications up to and including ASIL D, and they continue to gain traction as ADAS and autonomy become increasingly significant. Conversely, Intel and PowerPC have long been the architecture of choice for aircraft computers to gain high-integrity computing in a rugged, SWaP (size, weight, and power)–constrained environment. However, as Arm has proven its reliability, low power, and versatility in automotive and mobile applications, avionics engineers are now also turning to general-purpose Arm processors. By extending object-code verification to Arm-based chips, LDRA enables compliance to Level A—the highest safety requirements—of DO-178C, the safety-critical standard for aerospace, and provides an opportunity for automotive developers to provide a similar level of assurance for the most demanding of applications in their domain.

“Object-code verification has long been available for other specialized processors, but extending it to general-purpose Arm processors enables safety-critical designers to take advantage of the rich Arm ecosystem in their designs,” said Ian Hennell, Operations Director at LDRA. “By extending, LDRA has enabled avionic engineers to verify Arm-based applications to DAL A while enjoying the benefits of additional ecosystem flexibility and lower costs, and has opened the door for automotive engineers to apply this state-of-the-art technique in

Read the rest